Mass Spectrum dependence of Higgsmediated μ-e Transition in the MSSM

Based on Phys.Lett.B694:380-385,2011 PhysRevD.84.033011

> Masaki J. S. YANG (Univ. of Tokyo)

w/ Junji Hisano, Shohei Sugiyama, Masato Yamanaka

Mass Spectrum dependence of Higgsmediated μ-e Transition in the MSSM

- CLFV in the MSSM
- The Higgs mediated LFV
- Conclusion

cLFV in the New Physics

In the SM, there is **no LFV**. However,

Discovery of neutrino oscillation (SK,KamLand,SNO,K2K,etc,,,)

TeV physics requires partner of SM particles (SUSY? Xdim? LH???)

$$\mu \rightarrow e \gamma$$
 decay

$$\mathrm{BR}(\mu \to e \gamma) \sim \frac{\alpha}{4\pi} \frac{m_W^4}{(\Lambda \sim \mathrm{TeV})^4} \Delta_{\mu e}^2 F_{\mathrm{NP}}$$

Perhaps, detectable?

cLFV in the New Physics

In the SM, there is **no LFV**. However,

Discovery of neutrino oscillation (SK,KamLand,SNO,K2K,etc,,,)

TeV physics requires partner of SM particles (SUSY? Xdim? LH???)

$$\mu \rightarrow e \gamma decay$$

cLFV process is clean signature of beyond the SM!

- □ In the SUSY models, these cLFV are induced by
 - Ordinary slepton / gaugino exchange
 - Higgs exchange (Babu&Kolda, 2000, 2002) (Masiero et al, Brignole & Rossi, Ellis et al, etc,,,)

- □ In the SUSY models, these cLFV are induced by
 - Ordinary slepton / gaugino exchange
 - Higgs exchange (Babu&Kolda, 2000, 2002) (Masiero et al, Brignole & Rossi, Ellis et al, etc,,,)
- □ Especially μ→e, two-loop effects can be dominant (Paradisi, 2005, 2006)

Gaugino LFV

Higgs LFV

- □ We calculate this two-loop (Barr-Zee) dgms. and BR(μAl→eAl) / BR(μ→eγ) in some mass parameters.
 - It is considered that the Higgs effect becomes dominant when SUSY particles are decouple (non decoupling effect).

- □ We calculate this two-loop (Barr-Zee) dgms. and BR(μAl→eAl) / BR(μ→eγ) in some mass parameters.
 - It is considered that the Higgs effect becomes dominant when SUSY particles are decouple (non decoupling effect).
- However, if there are destructive interference, it is necessary to consider the Higgs LFV effect.

The Higgs mediated LFV

Higgs mediated FCNC

□ In the SUSY model, Superpotential must be holomorphic.

$$W_{\text{MSSM}} = Y_u U^c Q H_2 - Y_d D^c Q H_1 - Y_e E^c L H_1 + \mu H_1 H_2$$

SUSY
$$\overline{e}_{Ri}Y_{ij}^{e}e_{Lj}H_{d}^{0}$$
 1 Higgs for 1 fermion

→ no FCNC in the Higgs sector

But, SUSY
$$\overline{e}_{Ri}\Delta_{ij}e_{Lj}H_u^{0*}$$
 2 Higgs for 1 fermion

→ off diag Yukawa & FCNC occurs radiatively

Higgs mediated LFV in the MSSM

□ LFV Yukawa int. is induced radiatively.

Assuming all the SUSY mass are degenerate:

$$\Delta_{21}^L \sim \frac{\alpha_2}{24\pi} \delta_{21}^{LL}$$
 independent to M_{SUSY} in first order

⇒ Although SUSY particles mass (M_{SUSY}) is large, this effects remains (non decoupling effects).

The Non universal Higgs Model (NUHM)

	quark	$oldsymbol{q}$	1/2	spin	0	squark	$ ilde{q}$	m_0
	lepton	l	1/2		0	slepton	$ ilde{l}$	
	gauge boson	A_{μ}	1		1/2	gaugino	λ	$m_{1/2}$
m_{H_u}	Higgs boson	H_u	0	μ	1/2	Higgsino	$ ilde{H_u}$	
m_{H_d}		H_d			By EWS condition		$ ilde{H_d}$	

And we assume either left or right handed flavor mixing;

$$(m_{\tilde{e}_L}^2)_{ij} = m_{\tilde{e}_L}^2 (\mathbf{1} + \delta_{ij}^{LL})$$
 $(m_{\tilde{e}_R}^2)_{ij} = m_{\tilde{e}_R}^2 (\mathbf{1} + \delta_{ij}^{RR})$

The Non universal Higgs Model (NUHM)

	quark	q	1/2	spin	0	squark	$ ilde{q}$	m_0
	lepton	l	1/2		0	slepton	$ ilde{m{l}}$	1110
	gauge boson	A_{μ}	1		1/2	gaugino	λ	$m_{1/2}$
m_{H_u}	Higgs boson	H_u	0	μ	1/2	Higgsino	$ ilde{H_u}$	
m_{H_d}		H_d			By EWS condition		$ ilde{H_d}$	

And we assume either left or ri

$$(m_{\tilde{e}_L}^2)_{ij} = m_{\tilde{e}_L}^2 (\mathbf{1} + \delta_{ij}^{LL})$$

Free vor mixing; parameter

$$(m_{\tilde{e}_R}^2)_{ij} = m_{\tilde{e}_R}^2 (\mathbf{1} + \delta_{ij}^{RR})$$

The Non universal Higgs Model (NUHM)

	quark	q	1/2	spin	0	squark	$ ilde{q}$	m_0
	lepton	l	1/2		0	slepton	\widetilde{l}	7760
	gauge boson	A_{μ}	1		1/2	gaugino	λ	$m_{1/2}$
m_{H_u}	Higgs boson	H_u	О	μ	1/2	Higgsino	$ ilde{H_u}$	
m_{H_d}		H_d		m_{A^0} By EWSB condition;				

And we assume either left or right handed flavor mixing;

$$(m_{\tilde{e}_L}^2)_{ij} = m_{\tilde{e}_L}^2 (\mathbf{1} + \delta_{ij}^{LL}) | | | | | | (m_{\tilde{e}_R}^2)_{ij} = m_{\tilde{e}_R}^2 (\mathbf{1} + \delta_{ij}^{RR})$$

SUSY seesaw

SUSY SU(5) GUT

The Non universal Higgs Model (NUHM)

	quark	q	1/2	spin	0	squark	$ ilde{q}$	m_0	
	lepton	l	1/2		0	slepton	$ ilde{m{l}}$	17.50	
	We discussed µ-e transition								
m_{H_u}	from the gaugino / Higgs effects.								
m_{H_d}		H_d		m_{A^0} c	onditio	on;	H_d		

And we assume either left or right handed flavor mixing;

$$(m_{\tilde{e}_L}^2)_{ij} = m_{\tilde{e}_L}^2 (\mathbf{1} + \delta_{ij}^{LL})$$
 $(m_{\tilde{e}_R}^2)_{ij} = m_{\tilde{e}_R}^2 (\mathbf{1} + \delta_{ij}^{RR})$

SUSY seesaw

SUSY SU(5) GUT

Correlation between µ - e conversion

□ Evaluate $BR(\mu Al \rightarrow eAl) / BR(\mu \rightarrow e\gamma)$ in some mass parameters.

Gaugino LFV

Higgs LFV

Correlation between μ - e conversion

□ Evaluate $BR(\mu Al \rightarrow eAl) / BR(\mu \rightarrow e\gamma)$ in some mass parameters.

Gaugino LFV

Higgs LFV

$$\frac{\text{BR}(\mu\text{Al} \to e\text{Al})}{\text{BR}(\mu \to e\gamma)}$$

$$\mu \rightarrow e \gamma$$

Left handed slepton mixing case

cLFV correlation gives information of Higgs and SUSY sector.

Cancellation structure is different from left-handed mixing case.

□ When only $\widetilde{e_{Ri}}$ have flavor mixing, there are cancellation in the μ →e γ process.

Always destructive (Hisano, Moroi, Tobe, Yamaguchi) and complete cancel when $~\mu \simeq \tilde{m}_L$

□ When only $\widetilde{e_{Ri}}$ have flavor mixing, there are cancellation in the μ →e γ process.

□ When only $\widetilde{e_{Ri}}$ have flavor mixing, there are cancellation in the μ →e γ process.

□ When only $\widetilde{e_{Ri}}$ have flavor mixing, there are cancellation in the μ →e γ process.

$$BR(\mu N \to e N)^{R} / BR(\mu \to e \gamma)^{R} \qquad \begin{array}{c} \mu = \mu_{SUGRA} A_{0} = 0 [GeV] \\ m_{A}^{0} = 500 [GeV] \tan \beta = 20 \\ \end{array}$$

Although m_0 and $M_{1/2}$ are small, the ratio deviates sizably from $O(\alpha)$.

Conclusion

- □ We study non-decoupling µ-e transition effects by Higgs-mediated contribution in the MSSM.
- It is considered that the Higgs effect becomes dominant when SUSY particles are decouple. However, there are some Higgs dominant region although SUSY particle masses are TeV scale.
- □ BR(μN→eN)/BR(μ→eγ) could constrain $tan\beta$, m_A , or M_{SUSY} . The cLFV correlation gives information of Higgs sector or SUSY sector.

That's all. Thank you.